Elasticity management of Streaming Data Analytics Flows on clouds
نویسندگان
چکیده
منابع مشابه
Toward Reliable and Rapid Elasticity for Streaming Dataflows on Clouds
The pervasive availability of streaming data is driving interest in distributed Fast Data platforms for streaming applications. Such latency-sensitive applications need to respond to dynamism in the input rates and task behavior using scale-in and -out on elastic Cloud resources. Platforms like Apache Storm do not provide robust capabilities for responding to such dynamism and for rapid task mi...
متن کاملFlower: A Data Analytics Flow Elasticity Manager
A data analytics flow typically operates on three layers: ingestion, analytics, and storage, each of which is provided by a data-intensive system. These systems are often available as cloud managed services, enabling the users to have painfree deployment of data analytics flow applications such as click-stream analytics. Despite straightforward orchestration, elasticity management of the flows ...
متن کاملComputational Graph Analytics for Massive Streaming Data
Handling the constant stream of data from health care, security, business, and social network applications requires new algorithms and data structures. We present a new approach for parallel massive analysis of streaming, temporal, graph-structured data. For this purpose we examine data structure and algorithm trade-offs that extract the parallelism necessary for high-performance updating analy...
متن کاملFuzzy Data Envelopment Analysis for Classification of Streaming Data
The classification of fuzzy uncertain data is considered one of the most challenging issues in data analysis. In spite of the significance of fuzzy data in mathematical programming, the development of the analytical methods of fuzzy data is slow. Therefore, the current study proposes a new fuzzy data classification method based on fuzzy data envelopment analysis (DEA) which can handle strea...
متن کاملSemantic Management of Streaming Data
One of the fundamental challenges facing the unprecedented data deluge produced by the sensor networks is how to manage time-series streaming data so that they can be reasoning-ready and provenance-aware. Semantic web technology shows great promise but lacks adequate support for the notion of time. We present a system for the representation, indexing and querying of time-series data, especially...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer and System Sciences
سال: 2017
ISSN: 0022-0000
DOI: 10.1016/j.jcss.2016.11.002